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In this talk, our goal is to complete the proof of Thue’s theorem.

Theorem 1 (Thue’s theorem). Suppose that β is an algebraic number of degree d ≥ 3, and suppose that
s > (d+ 2)/2. Then there are only finitely many rational numbers p/q that satisfy the inequality∣∣∣∣β − p

q

∣∣∣∣ ≤ q−s.

1 Outline of the proof

WLOG, we assume that (d+ 2)/2 < s ≤ d in this talk (since we have Liouville’s theorem).
Recall the outline of the proof:
Suppose that the algebraic number β has infinitely many good rational approximation p/q, then it has

two very good rational approximations r1 = p1/q1 and r2 = p2/q2.

(1) Find a non-zero polynomial P ∈ Z[x1, x2] with controlled degree and coefficients that vanishes to high
order at (β, β). (Use parameter counting.)

(2) Because r1 and r2 are good approximations of β, the polynomial must also vanish to high order at
(r1, r2).

(3) The polynomial P vanishes too much at (r1, r2), and so its coefficients have a lower bound.

(4) Compare the lower and upper bound. Contradiction.

2 Step 1: Parameter counting

Firstly, we give the parameter counting lemma for linear map L : ZM → ZN given by a matrix with
integer coefficients. Denote |x|∞ = maxi |xi| for x = (x1, . . . , xk) ∈ Zk.

Lemma 2 (Siegel’s lemma). If L : ZM → ZN is a linear map, given by a matrix with integer coefficients,

with M > N , then there exists a nonzero x ∈ ZM with |x|∞ ≤ |L|N/(M−N)
op such that Lx = 0, where

|L|op = sup
x∈ZM\{0}

|Lx|∞
|x|∞

Remark. If L = (aij)i,j, then

|L|op = max
1≤i≤N

M∑
j=1

|aij | .

If we assume further that |aij | ≤ B, then |L|op ≤ MB.

Next we will use this parameter counting argument to find an integer polynomial P (x1, x2) that vanishes
at (β, β) to high order, with a bound on the degree of P and the size of the coefficients of P . We write |P |
for the maximum of the absolute value of the coefficients of P .
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Proposition 3. Let β ∈ R be an algebraic number of degree d. Suppose ε > 0. For any sufficiently large
integer m, there is a polynomial P ∈ Z[x1, x2] with the form P (x1, x2) = P1(x1)x2 + P0(x1) such that

• ∂j
1P (β, β) = 0 for 0 ≤ j ≤ m− 1.

• degP ≤ (1 + ε)dm/2 + 2.

• |P | ≤ C(β)m/ε.

Remark. The reason that we consider polynomial P with such form dates back to the original paper by
Thue, where we want to extend the method used in the proof of Liouville’s theorem.

The proof of this proposition need the following lemma which gives an upper bound of the coefficients of
the expansion of βe (e ≥ d).

Lemma 4. Suppose Q(β) = 0, where Q ∈ Z[x] with degree d and leading coefficient qd. Then for any e ≥ d,
we can write

qedβ
e =

d−1∑
k=0

ckeβ
k,

where cke ∈ Z and |cke| ≤ (2 |Q|)e.

3 Step 2: Taylor approximation

Recall Taylor’s theorem.

Theorem 5 (Taylor’s theorem). If f is a smooth function on an interval, then f(x+h) can be approximated
by its Taylor expansion around x:

f(x+ h) =

m−1∑
j=0

1

j!
∂jf(x)hj + E,

where the error term E is bounded by

|E| ≤ 1

m!
sup

y∈[x,x+h]

|∂mf(y)|hm.

Corollary 6. If Q is a polynomial of one variable, and Q vanishes at x to order m ≥ 1, and if |h| ≤ 1, then

|Q(x+ h)| ≤ C(x)degQ |Q|hm.

Next, we can choose suitable ε to make P in Proposition 3 vanishes at (r1, r2) to high order.

Proposition 7. Suppose that β is an algebraic number of degree d ≥ 3. Suppose that s > (d+ 2)/2. There
is a small constant c(β, s) > 0 so that the following holds. Suppose that r1 = p1/q1, r2 = p2/q2 such that

|β − ri| ≤ q−s
i .

We assume that q1 < q2, and we let m be the integer so that

qm1 ≤ q2 < qm+1
1 .

Given β and s, we also assume that q1 is sufficiently large and that m is sufficiently large. Then there exists
a polynomial P ∈ Z[x1, x2] with the form P (x1, x2) = P1(x1)x2 + P0(x1) such that

• ∂j
1P (r1, r2) = 0 for 0 ≤ j < c(β, s)m.

• degP ≤ C(β)m.

• |P | ≤ C(β)m.

Remark. The assumptions for q1, q2,m make sense, because if there exist infinitely many rational numbers
p/q such that |β − p/q| ≤ q−s, then we can find a sequence of such q with qi → ∞.
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4 Step 3: Gauss’s lemma

Recall that, in last talk, we have proved the next proposition, which could give us a lower bound of the
polynomial P .

Proposition 8. If P (x1, x2) = P1(x1)x2 + P0(x1) ∈ Z[x1, x2], and (r1, r2) = (p1/q1, p2/q2) ∈ Q2, and
∂j
1P (r1, r2) = 0 for j = 0, . . . , l − 1, and if l ≥ 2, then

|P | ≥ min
{
(2 degP )−1q

(l−1)/2
1 , q2

}
.

5 Conclusion

We are ready to complete the proof of Thue’s theorem.
We have to show that there are only finitely many rational solutions to the inequality∣∣∣∣β − p

q

∣∣∣∣ ≤ q−s.

Suppose that there are infinitely many such rational numbers p/q. Let p1/q1 be one rational solution,
where q1 is large enough. Then let p2/q2 be another rational solution, with q2 much larger than q1. We
define m to be the integer so that qm1 ≤ q2 < qm+1

1 .
By Proposition 7, there is a polynomial P ∈ Z[x1, x2] with the form P (x1, x2) = P1(x1)x2 + P0(x1) such

that

• ∂j
1P (r1, r2) = 0 for 0 ≤ j ≤ l − 1, where l = c(β, s)m.

• degP ≤ C(β)m.

• |P | ≤ C(β)m.

On the other hand, Proposition 8 gives a lower bound for |P |:

|P | ≥ min
{
(2C(β)m)−1q

(l−1)/2
1 , q2

}
≥ q

c̃(β,s)m
1 .

Hence, we get

q
c̃(β,s)m
1 ≤ C(β, s)m,

and so
q1 ≤ C(β, s)1/c̃(β,s).

Since q1 could be arbitrarily large, this is a contradiction.
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